0=-16t^2+162+150

Simple and best practice solution for 0=-16t^2+162+150 equation. Check how easy it is, and learn it for the future. Our solution is simple, and easy to understand, so don`t hesitate to use it as a solution of your homework.

If it's not what You are looking for type in the equation solver your own equation and let us solve it.

Solution for 0=-16t^2+162+150 equation:



0=-16t^2+162+150
We move all terms to the left:
0-(-16t^2+162+150)=0
We add all the numbers together, and all the variables
-(-16t^2+162+150)=0
We get rid of parentheses
16t^2-162-150=0
We add all the numbers together, and all the variables
16t^2-312=0
a = 16; b = 0; c = -312;
Δ = b2-4ac
Δ = 02-4·16·(-312)
Δ = 19968
The delta value is higher than zero, so the equation has two solutions
We use following formulas to calculate our solutions:
$t_{1}=\frac{-b-\sqrt{\Delta}}{2a}$
$t_{2}=\frac{-b+\sqrt{\Delta}}{2a}$

The end solution:
$\sqrt{\Delta}=\sqrt{19968}=\sqrt{256*78}=\sqrt{256}*\sqrt{78}=16\sqrt{78}$
$t_{1}=\frac{-b-\sqrt{\Delta}}{2a}=\frac{-(0)-16\sqrt{78}}{2*16}=\frac{0-16\sqrt{78}}{32} =-\frac{16\sqrt{78}}{32} =-\frac{\sqrt{78}}{2} $
$t_{2}=\frac{-b+\sqrt{\Delta}}{2a}=\frac{-(0)+16\sqrt{78}}{2*16}=\frac{0+16\sqrt{78}}{32} =\frac{16\sqrt{78}}{32} =\frac{\sqrt{78}}{2} $

See similar equations:

| -3c-9+4c=-2c+9 | | 18x+2=10x+66 | | k+6k-4k=15 | | -3b=-7-46 | | 15x+10=5x+210 | | 4u-u-u+5u=7 | | -10-3+6s=8+9s | | 4x+1+75+60=180 | | 4/5(x+3)=5 | | 2j=j-7 | | 3.1=50+6x/20 | | 6h-4h=16 | | -20.7=-3.2+x/7 | | -10f-3=7-9f | | 2+10x=4x+44 | | 9v-8v=20 | | 7t+1=8t+8 | | 10=0.50n+4 | | 14x+10=4x+90 | | d-3+ -5=-8 | | 4(b-6)=b^2 | | -4u=-5u-4 | | 2(2x+6)-5(x+4)=4 | | 2(x-4)+7=12 | | 82=7x-9 | | -w+6=-6w-9 | | 4z-9=2 | | -6w=-5w-8 | | 186=72-y | | 9d=10d+8 | | 77=10x-23 | | 0.4=x/0.24+x |

Equations solver categories